
Journal of Statistical Ph.),sics, Vol. 77, Nos. 3/4, 1994 

Random Walks with Short-Range Interaction 
and Mean-Field Behavior 

Sergio Caracciolo, ~ Giorgio Parisi, 2 and Andrea Pelissetto 3 

Receioed December 15, 1993," final May 13, 1994 

We introduce a model of self-repelling random walks where the short-range 
interaction between two elements of the chain decreases as a power of the 
difference in proper time. The model interpolates between the lattice Edwards 
model and the ordinary random walk. We show by means of Monte Carlo 
simulations in two dimensions that the exponent VMF obtained through a mean- 
field approximation correctly describes the numerical data and is probably exact 
as long as it is smaller than the corresponding exponent for self-avoiding walks. 
We also compute the exponent ~, and present a numerical study of the scaling 
functions. 

KEY WORDS: Random Walks; polymer; Monte Carlo; mean field; critical 
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1. I N T R O D U C T I O N  

Self-avoiding walks on a lattice are a fascinating subject. Although they are 
much simpler than an lsing or Heisenberg spin system, they behave quite 
similarly in the critical region where the coherence length is much larger 
than the lattice spacing. There are deep reasons for this similarity. Indeed, 
using Symanzik representation, (~'-') one can write the free energy of a spin 
system as sum over partition functions of self-avoiding walks. Moreover, 
the self-avoiding walks are exactly the limit of an O(n)-invariant spin 
system for n going to zero. (3 6) 
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A long time ago Flory, tT~ using simple-minded approximations, found 
that the critical exponent v in dimension D less than or equal to 4 was 
given by the simple expression 

v = 3 / ( 2 + O )  (1) 

This result is quite puzzling; it is exact for D = 1, 2, and 4, and it is a very 
good approximation in D =  3,18 J~l although in 4 - e  dimensions the exact 
results and Flory's differ at first order in e.13~ The Flory approximation was 
strongly criticized by des Cloiseaux, ~2"~31 but he found the puzzling result 
that a more accurate variational approximation leads in three dimensions 
to the rather bad value of v = 2/3. 

Quite recently it was found that des Cloiseaux' method can be 
extended to the case of polymers with long-range repulsionJ ~4~ Also in this 
case Flory's and des Cloiseaux' approaches give different results; however, 
here it is possible to give very strong arguments suggesting that the varia- 
tional approach of des Cloiseaux gives the exact result in the case where 
the space dimension becomes infinite. 

The putative exact infinite-dimensional results can be extrapolated at 
finite dimensions using arguments based on the renormalization group and 
performing the approximation directly at finite dimension. One finally finds 
that for an interaction which decreases with the distance as a power law 
with exponent2, v is given by the generalization of des Cloiseaux' 
formula 1141 

'l for 2~<2 

v = ,  2/2 for 2~<).~<4 (2) 

(.1/2 for 2>14 

with logarithmic corrections when 2 = 2, 4. 
Some of these predictions have been numerically tested. ~lsl 
The fact that mean-field methods give in the previous case the exact 

value of v is not a big surprise, as they usually work well with long-range 
interactions. ~6~ It remains unclear, however, if the same approximation can 
be applied with success to theories with short-range interactions. In this 
paper we discuss a model for polymers with a potential which is strictly 
short-range in space, parametrized by an exponent 2 which interpolates 
between the Edwards model ~17~ ( 2 = 0 )  and the ordinary random walk 
(2 = oo). The mean-field analysis of des Cloiseaux can be trivially extended 
to this case and a prediction for VMV().) can be derived. In two dimensions 
we have studied this model with a Monte Carlo simulation and we have 
found that the observed value of v is in good agreement with max(vMv(2), 
VSAW) with VSAW = 3/4. Thus this model provides an example of a system 
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where the interactions are strictly local and where the variational approach 
gives the exact answer for v at least for a certain range of the parameters. 

The well-confirmed mean-field predictions for the exponent v do not 
imply, however, that the critical behavior of the model is really mean-field. 
In order to clarify this point, we have also studied the critical exponent ~, 
and checked that in mean-field approximation its value is systematically 
overestimated. 

We present the model in Section 2, and in Section 3 we report the 
computa t ion of v using the method of des Cloiseaux. The algorithms we 
use for the numerical simulations are described in Section 4; the results we 
obtain are presented in Section 5. Some conclusions and a discussion of the 
results appear in Section 6. 

2. THE  M O D E L  

Let ~ be the ensemble of random walks on the hypercubic lattice Z ~ 
of N steps, starting from the origin. Thus, if 09 ~ if, 

co = {~o, o),, o) z ..... o)u} (3) 

with co o = 0 the origin of the lattice, toim Z ~ the location at time i of the 
walk, and I to i -  coi_ 11 = 1 for i = 1 ..... N. 

We consider an interaction of the form 

1 u 6=,.=, (4)  
H l [ w ]  = ~ g o  i .~o li--J[ ~" 

i H j  

This means that in the ensemble average <. > in ff we associate to each 
walk the statistical weight 

e -  Hi[to] 
m[ to ]  = (5) 

ZN 

where 

ZN = ~ e -"'C'~ (6) 

A similar model had been previously considered by Oono.  uSI 
To study the conformation of the walks in this ensemble, we shall 

consider the square end-to-end distance 

R~Eco] = ~ (7) 
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and the square radius of gyration 

R g [ ~ ] - N +  1 t0~ N + I  ~' oj  (8) 
i = 0  j = O  / 

Both of them are believed to have the asymptotic behavior 

( R  2)  ~ N  ~-" (9) 

as N--* ~ ,  with the same critical exponent v. 
We shall also consider the universal ratio 

A -  (10) 

For ORW (ordinary random walks) we have v=1 /2  and A = 1/6~ 
0.16667, while for SAW (self-avoiding walks) v and A depend on the 
dimension of the embedding space. In two dimensions we have v = 3/4,1'9~ 
while the most precise estimate for A is obtained by a Monte Carlo simula- 
tion t2~ whose result is A =0.14026 + 0.00011, where the error bar is 95 % 
level of confidence. 

We will also compute the exponent y assumping that for large N 

ZN = p,VN;.- I ( 1 ! ) 

where p is a nonuniversal constant and y a universal exponent depending 
only on 2 and on the dimensionality of the space D. 

For ORW, y = 1, while for SAW, ), depends on the dimension D. In 
two dimensions y = 43/32 = 1.34375. Itg) 

3. MEAN-F IELD ANALYSIS  

In this section we want to derive an estimate of the critical exponent 
v with a variational approach. Following des Cloiseaux, It2) we consider 
random rings instead of random walks, as this fact does not change the 
value of v and simplifies the calculations by permitting Fourier analysis 
along the chain. In addition, it is simpler to work in continuum space 
rather than on a lattice. In this case one must somehow regularize the 
6-function appearing in (4). We will thus consider as equilibrium probability 
measure for the model 

1 
drn(oJ) = ft. exp( - H)  dO lDl dD o~2 . . .  d ~  CON (12) 
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where the Hamiltonian is given by 

I N 1 ( H=2i~=o= (~ ')2+ 4g~ i.i,,oL V[(t~ toJ)z]li_jl:. Jr V[((l}i--{ljJ)2]~~#) 
i~j (13) 

The second term in the potential has been added in order to guarantee 
invariance under translations along the chain. Here V(x 2) can be any 
arbitrary short-range potential and for definiteness we will assume 

V(xZ) = exp ( - ~a ) (14) 

The mean-field approximation is based on a variational approach with a 
Gaussian trial measure c~z'141 

1 
dmo(Og) = w- exp( - H0) dOol d~ ... dOo~A, (15) 

Lo 

with 

'L 
H o = ~  Gi~-l ~ .toi (16) 

i . j=O 

and 

Zo = (27t) IN+ l l~ G) D/2 (17) 

The function G o �9 is determined by minimizing the functional 

FIG] = ( H -  H o > o - i o g  Zo (18) 

where <. >o denotes the expectation value with respect to dmo. 
Because of invariance under translations along the chain we have 

Gij=G(i - j )  and by symmetry G(n)=G(-n).  It is also convenient to 
introduce the Fourier transform 

N - I  

G(p)=  ~ G(r)e ~m (19) 
" r ~ 0  

where p = 0, 2n/N ..... 2n(N-  1 )/N, and (~(p) is real and positive due to the 
positive-definiteness of Gq. 
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The functional F can be computed as 

'~ �9 dp (~(p)( I - cos p) - D [ 1 + log(2rt)] F [ G ] = D  f 
N 

D " dp 
- ~ j '_.  ~-~ log (~(p) 

[ ]_~ 
+ g o  1~ 1 + -  (~(p)(l -- c o s p Q  (20) 

where we have replaced sums over p with the corresponding integrals, as 
we are interested in the regime of very large N. 

The minimization condition becomes 

1 = 2 ( l _ c o s p )  g_A ~ 1 (~(p) a ~L= t ~ (1 - cos pz) 

x 1 +  -~- (~(p')(l -- cos 

The exponent  v can be extracted, as easily seen, from the low-momentum 
behavior of G(p) as 

1 
(~(p) ... iP12~+ ~ (22) 

The analysis of (21) is quite subtle and can be done following the original 
paper by des Cloiseaux ~12~ and predicts v = 1/2 for D > 4, while for D ~<4 
it gives the following result: 

t�89 for 2 > � 8 9  
I/MF(,~, D) 

( 2 -  2)/D for max(0, 2 -  D) < 2 < �89 (23) 

For  2 = 0, D = 2, additional logarithmic corrections appear as 

( R  2 ) .-. U2/log U (24) 

and analogous for 2 = � 8 9  D) we get 

( R  2)  ~ N(log N )  2/~ (25) 

Thus we obtain an ORW for ). large enough. This has indeed to be 
expected, as we have the trivial rigorous bound 

Hi(co) < C N  2 - z (26) 

showing that at least for 2 > 2 the model is an ORW. 
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On the other hand, the mean-field result VMV is definitely wrong for 
2 = 0 ,  D~<4, which corresponds to the SAW limit. Itz171 In two and three 
dimensions VSA w is equal respectively to 3/4 and approximately 3/5 [see 
(1)] while VMF(0, D) corresponds to 1 and 2/3. For D = 4  the mean-field 
approach correctly predicts logarithmic corrections to the random-walk 
behavior, but the power of the logarithm is higher than that obtained using 
the renormalization group, which predicts c211 

( R g )  ~ N(log N)1/4 (27) 

Of course the variational approach will overestimate v also for small 2. We 
do not have any theoretical control of this regime. However, as we will dis- 
cuss in Section 5, our numerical results are in reasonable agreement with 
the following conjecture for v(2, D): 

v(2, D) = min(vsA w, VMF(2, D)) (28) 

Let us finally notice that for large N, the mean-field equation (21) has a 
general scaling solution. Indeed, in the limit of small p, which corresponds 
to large N, we can rewrite (21) as 

_ 1 f ~  _;. 1 - c o s p r  

Jo 1 1 go dr z p2 
p2C(p )  a 

x _ -~- C(p')(1 - cos 

It is easy to check that the general solution has the form 

which gives 

C ( p )  =-~ f;.(go p . -  2 + 0/2) 

( R~ ) = Nf;.(go N2  - ~" - o/z) 

(30) 

In the previous discussion we have considered the limit N--, ~ with go 
fixed. Different critical behaviors can be obtained if we let go go to zero or 
infinity when N goes to infinity. Let us thus study the limit N---, oo with 
g = g o  N - a  fixed. For simplicity we shall set from now on D = 2 ,  the 
generalization to arbitrary D being trivial. 

Let us first consider the case in which di < 0, namely the case in which 
we are weakening the coupling constant when approaching the asymptotic 
limit. One can think of the model in the intermediate region in a pertur- 
bative expansion around the ORW, that is, around go = 0. To evaluate the 

(31) 
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dimension of the coupling constant, remark that N 2 - ' ~  is the asymptotic 
behavior for large N of the average number of intersections of two walks 
of N steps and Hausdorff dimension 1Iv on a lattice of dimension D. Then 

[g ]  = - [ N ] ( b - 2 + 2 - V o R w D  ) = 2 + 2 6 - 2 2  (32) 

and 

1 
[N]  = - 2  (33) 

VORW 

Thus in the scaling region we expect that for g N  '~ small 

( RZg ) = NF;.(g, N )  = N f ; . ( gN  l +'~- ~) (34) 

Let us notice that for 6 = 0 this expression coincides with the scaling for- 
mula (31). For g = 0  the model is an ORW and thus we get f~.(0):~0. It 
follows that, when 6 < 2 -  1, ( R g )  scales as N. On the other hand, when 
2 - 1  <~6 < 0  the argument of the scaling function f~. goes to infinity. 
Assuming in this limit f ) . ( x ) ~  x ~, with fl independent of 6, we get 

(35) 

The value of fl is computed using the conjectured value for v when 6 = 0. 
In this way we obtain that f ; . (x)  scales for large x as 

fx(2VSAW--I)/(I--)t)"~X 1/(2-22) when 0~<2~< 1/2 (36) 

f a ( x ) ~ x t 2 V ~ ) - l ] / ~ l - ~ ) ~ x  when 1/2~<2~<1 

Then we obtain the prediction 

N /2+6/12-22) when 0~<2~< 1/2, di~>2- 1 

( R 2 ) = ~ N  2+a-'l when 1/2~<).~<1, 6 / > 2 - 1  

( N  when 21>1 and 2 < I ,  6 < 2 - 1  

(37) 

In the opposite situation ( 6 > 0 )  the coupling constant goes to infinity 
while approaching the asymptotic limit and we can expect that in this case 
the scaling behavior is controlled by the SAW fixed point. Then 

1 4 
[N]  . . . . . .  (38) 

VSA w 3 

and 

[g ]  = - [ N ] ( f - 2 + 2 - V s A w D )  (39) 
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so that we expect that for gN '~ large 

( R~ ) = N 2"sawFi. ( g, N) = N 3/2 f l . (gN 1/2 + ,~ - 1. ) (40) 

Since for g going to infinity at fixed N we expect the model to describe a 
SAW, ft .(x) must converge to a constant for large x. It immediately follows 
that for 6 > 2 - 1 / 2  the behavior is that of a SAW. On the other hand, 
when & < 2 -  1/2 and 2 > 1/'2, the argument of the scaling function goes to 
zero when N goes to infinity. Since for g = 0 we have an ORW, we must 
have f t . (0)= 0. Then, assuming for small x the scaling form f t . ( x )~  x ~, we 
get 

( R~ ) ~ N 312 +B~112 +6-1.1 (41) 

This exponent fl is computed by requiring that for 6 = 0  this formula 
reproduces the result (28). We thus get that the scaling function f;. must 
scale for small argument as 

~Xt41v~i.l-,'sAwl]/li - 21.1 ~ X when 1/2 ~< 2 ~< 1 (42) 
f i . ( x )~  ~X4~,.ORW_,.SAWV~I_21.~~XUlZl._ 1~ when 2>~ 1 

Then for positive f we get 

I N /2 when 0 ~< 2 ~< 1/2 and 2 > 1/2, f > 2 -  1/2 

( R ~ ) = ~ N  2+6-i" when 1/2~<2~<1, 6 < ~ 2 - 1 / 2  (43) 

~ N  1+~/~zI"-II when 2>/1, 6 ~ < 2 - 1 / 2  

Let us notice that all these scaling arguments do not take into account 
logarithmic corrections, which we expect to be present for those values of 
& where there is the transition to the purely SAW or ORW behavior. 

The exponent v could also be studied h la Flory. In this case the free 
energy is approximated as a sum of two terms, the former due to the 
potential energy and the latter to the entropy. Thus 

N2-• R 2 
F = a ~ +  b--~ (44) 

which gives by minimization that 

Ro+2.,.~N3-;. 

and therefore 

(45) 

3 - 2 
vv(2)= (46) 

D + 2 
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valid as long as v F/> 1/2. Of course, for 2 = 0 it coincides with the usual 
Flory result. Moreover, the value of 2 such that vv(2 ) = 1/2 coincides with 
the one such that VMF0. ) = 1/2. This has to be expected: indeed the two 
main problems of the Flory procedure are the use of the entropy as com- 
puted for ORW and the neglecting of correlations among monomers. But 
both approximations are reasonable for the model where v = 1/2. In the 
intermediate region, however, as we shall see in the next section, the Monte 
Carlo data clearly disagree with the prediction vv(2). 

4. THE A L G O R I T H M  

In order to determine v, we have generated random walks with fixed 
N distributed .according to (4) by using the so-called pivot algorithm, t22-24~ 
which is known to be extremely efficient for the simulation of SAWs with 
fixed number of steps and free endpoints, as the computer time necessary 
to produce an independent walk is of the order of the number of steps in 
the walk, which is also the best possible behavior because this is the order 
of time necessary simply to write down all the steps. 

The algorithm is defined as follows, c24) Choose at random a point 
along the walk (the pivot), but not the first or the last one. Let it be the 
kth point Ok, with 0 < k < N. Then choose at random an element g in the 
symmetry group of the lattice and propose a new walk co' defined by 

, (co; for O<~i<~k 

O'~i: ~(Ok'~-g((oi--O~k) for k + l <~i<.N 
(47) 

The new walk is accepted according to a Metropolis test in order to 
generate the desired statistical ensemble. 

For the limiting case of ORW and SAW it is known cz4J that for a 
global observable A the integrated autocorrelation time Tint. A scales for 
large number of steps according to 

rint.A ~ N p (48) 

where (the exponent p should be the same for all global variables) 

0 for ORW (49) 
P = 0.194 + 0.002 for SAW 

For our models, as can be seen from TableI,  where we report the 
integrated autocorrelation time for the end-to-end distance, we obtain 
similar results. When the values of the parameters are such that the walks 
are in the same universality class of ORW or SAW, the dynamical behavior 
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Table I. Integrated Autocorrelation Times for the Pivot Runs for the 
End-to-End Distance for Selected Values of the Parameters A, 6, and 

g and of the Number of Steps N of the Walks" 

2 0.00 0.00 0.00 0.00 0.25 
J -- 1.00 -- 0.75 -- 0.50 - 0.25 0.00 
g 1.00 2.00 3.00 4.00 1.00 
N= 100 6.27(5) 6.22(5) 7.00(6) 8.07(8) 7.48(7) 
N=200 6.31(8) 6.24(7) 7 .76(10)  9 .07(13)  8.53(12) 
N=500 6.54(8) 6.44(7) 7 .99(11)  10.77(17) 9.87(15) 
N= 1000 6.53(8) 6.61(8) 8 .62(12)  11.63(20) 11.19(18) 
N= 2000 6.51(8) 6.54(8) 8 .74(12)  13.24(23) 13.14(23) 
N= 4000 6.40(8) 6.64(9) 9 .59(14)  14.71(27) 15.37(29) 
p,. 0.00 0.05 0.09 0.14 0.19 
p 0.00(1 ) 0.01(1) 0.08(1) 0.15(1) 0.20(1) 

"p,. is the value obtained through a linear interpolation for the dynamic critical 
exponent, and p is the estimate based on a fit from our data. 

is compat ib le  with (49). In the intermediate  cases for which 1/2~< v~< 3/4 
the dynamic  critical exponent  p ranges correspondingly  within the interval 
[0, 0.19], and we find that  it is in reasonable  agreement  with a l inear inter- 
po la t ion  of the form 

Pv = 0.39(2v - 1 ) (50) 

Let us now discuss the computa t iona l  complexity.  In the pract ical  
implementa t ion  we used a hash-table  with l inear probing  in order  to check 
for the self-intersections of the walk. In the case of SAWs Madra s  and 
Sokal  t24) showed that  it is par t icular ly  convenient  to insert the points  in the 
hash- table  s tar t ing from the pivot  point  and working ou tward  (and of 
course s topping as soon as an intersection is detected).  In this way the 
mean work  per move turns out  to be of order  N ] - P, thus smaller  than the 
work done by inserting the points  wi thout  a special order  which is of 
order  N. We used in our  case a similar trick. Indeed,  choosing a r andom 
number  r uniformly dis t r ibuted in the unit interval,  according to the 
Metropol i s  prescript ion,  the p roposed  walk o / i s  accepted if 

H[og ' ]  ~< S - H[~o] - In r (51) 

Our  implementa t ion  works  as follows: after the choice of the pivot  point  
and of the t ransformat ion  g we choose the r andom number  r and compute  
the quant i ty  S. Then we begin to construct  the new walk and we insert the 
points  in the hash- table  s tar t ing from the pivot  point  and working out-  
ward. Whenever  we find an intersection we sum to the energy of the new 
walk the cont r ibu t ion  from that  intersection, but  we stop if the 
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accumulated value is already larger than S, because the proposed walk has 
to be rejected. 4 In the limiting case of very strong repulsion, when the 
universality class is the same as that of SAW, this implementation works 
exactly as the original one devised by Madras and Sokal. In the opposite 
limiting case, the ORW one, practically all proposed walks will be accepted 
and thus no improvement can be expected. In the general situation we 
expect (although we did not check) that the computational work scales as 
N I~ -P~, where p is the dynamic critical exponent for global observables and 
thus, in all cases, that the computer time necessary to produce a statisti- 
cally independent measurement is of order N. 

In order to determine the exponent ),, we have used the recently intro- 
duced join-and-cut algorithm, which simulates the ensemble of two walks 
with fixed total number Nt,,t of monomers/25~ There is no interaction 
between the two walks and the Hamiltonian is simply the sum of the 
Hamiltonians of the two walks. One sweep of the algorithm consists of two 
steps: 

1. 

2. 

Each walk is first updated using the pivot algorithm. 

A join-and-cut move is performed: the two walks are concatenated 
and then cut at a random point. The two new walks are then 
accepted according to a Metropolis test. 

This algorithm is extremely efficient for SAWs. If A is a global 
observable, the integrated autocorrelation time scales for a large number of 
steps according to 

zi.I.A - NPo~ (52) 

where 

0 for ORW 
P ~  0.7 for SAW 

(53) 

For our models we obtain a similar behavior. When 2 ~< 1/2 the dynamical 
behavior is equal to that of a SAW, while for 1/2~<2~<1 the critical 
behavior interpolates between that of a SAW and that of an ORW. In 
Table II we report the autocorrelation time for log Nj, where Ni is the 
length of the first walk, from which we get 

0.45(5) for 2 = 0  

p,~ ~0.49(4) for 2=0.25 (54) 
! 

[,0.10(1 ) for 2=0.75 

4 This procedure works because the interaction is repulsive. For attractive interactions, such 
as for SAWs or trails at the 0-point, the whole new walk must be defined and therefore the 
mean work per pivot move will scale as the number of steps N. A similar trick was imple- 
mented in the study of the Edwards model in ref. 26. 
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Table I1. Integrated Autocorrelation Times 
for the Join-and-Cut Runs for log N1 ~ 

2 0.00 0.25 0.75 
go 2.00 1.00 1.00 
N= 2000 13.32(0.48) 8.12(0.23) 1.65(0.02) 
N= 4000 17.88(0.74) 11.66(0.39) 1.71(0.02) 
N= 8000 25.30(1.76) 15.81(0.69) 1.90(0.02) 
p 0.45(5) 0.49(4) 0.10(1 ) 

~p is the estimated dynamic critical exponent. 

531 

Turn ing  now to the practical implementat ion of the algorithm, we 
have used the method presented in ref. 25, Section 3.2, and applied the 
same trick used for the pivot algorithm in order to detect Metropolis 
failures early. In this way each jo in-and-cut  move is expected to have a cost 
of order N~o t ~'. Thus, as in the original algorithm for the SAW, the com- 
putat ional  complexity is dominated by the pivot moves and thus we expect 
also in this case that the C P U  time per iteration scales as N~o7 p. 

5.  N U M E R I C A L  R E S U L T S  

In order to test the ideas presented in Section 3, we have performed an 
extensive Monte  Carlo simulation on a square lattice on walks of lengths 
ranging from 100 to 8000. 5 The total C P U  time for these runs was roughly 

5000 hours of a VAX 6000-520. 
We have first of all measured v using the pivot algorithm. The first 

problem one has to deal with is the initialization, that is, for each value 
of 2, 6, g, and N one has to generate a starting walk. This was done in two 
different ways according to the value of N. When N was less than or equal 
to 2000 we generated a SAW using a dimerization routine. 127 29.24~ When 
instead N =  4000, 8000, as the dimerization routine is too costly (the com- 
puter time needed to generate a walk scales as z ~ N ~j~ N+b, with a ~0 .17  
and b ~ 0 . 7 2  in two dimensions),  we used the scanning method I3~ with 
scanning parameter  equal to 3. 6 Neither method generates a random 
sample of walks with the correct equil ibrium distribution, although the first 

5 For the Edwards model (2 = 0) an extensive numerical study is presented in ref. 26. 
6 The only reason we used the dimerization routine for the Iow-N runs was its availability at 

the time of the runs. In retrospect it would have probably been more convenient to use the 
scanning program in all cases. 
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is exact in the SAW limit and the second in the O R W  one. It was thus 
necessary to run a certain number  of thermalization iterations before 
measuring. As the convergence to equilibrium of a Markov  chain is con- 
trolled by the exponential autocorrelation time rex p, it is necessary to run 
a few rexp iterations to reach equilibrium. For  the pivot algorithm Z~xp is 
proport ional  to N. For  this reason we ran approximtely 10N pivot itera- 
tions for thermalization before measuring. For  each value of 2, 6, g, and N 
we then performed l06 iterations, except when N =  100, in which case the 
runs consist of  2 x 106 iterations. The integrated autocorrelat ion times for 
the squared end-to-end distance and for the square radius of  gyration range 
from 3 to 20 and from 5 to 60, respectively. We have reported a few of 
them in Table I. 

In Table III  and IV we report the results of our  runs for ( R ~ )  for dif- 
ferent values of the parameters, respectively for negative and positive values 
of~. 

We have performed least-squares regressions on these data in order to 
determine the critical exponent v. We fit ( R ~ )  to the ansatz aN 2" by per- 
forming a weighted least-squares regression of its logarithm against log N, 
using the a priori error bars on the raw data points to determine both the 
weights and the error bars. In order to control the systematic error due to 
corrections to scaling, we have done various fits in which the data points 
with lowest N were discarded. The results of these fits are reported in 
Table V and VI for various Ncut, where Ncut is the minimum N included in 
the fit. In many cases one sees a systematic drift of  the estimated exponent 
with Ncu t, an indication of  strong corrections to the scaling. This effect is, 
however, strongly dependent on the value ofg.  When the expected value 
of v is different from 1/2 and 3/4 one observes that for for g small the 
estimated value of v increases with Ncut, while for g large the estimate 
decreases. For  the intermediate values of g there is a flatness region where 
v remains approximately constant, meaning that for these values the 
g-dependent corrections are small compared to our statistical error. For  
every 2 and 6 we have made various runs for different values of g in order 
to find the flat region where the corrections are small enough, in order to 
obtain estimates of v with a smaller systematic error. Our  final estimates 
are in reasonable agreement with the proposed value of v, the discrepancy 
being less than a few percent. The worst cases are for 2 = 1 and 2--0.5.  
For  instance, for ~ = 1/3, 2 = 1 our data suggest v ~0.68, 0.69, while the 
expected value is v = 2/3 ~ 0.667. Let us notice, however, that for 2 = l and 
2 = 0.5 we expect the presence of logarithmic corrections, i.e., a behavior of 
the form 

(R~)N=aN2"iogt~ N(l +O(l / logN,  loglogN/logN)) (55) 
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Table VII. Results for the Runs with Higher Statistics 
and Comparison with the Expected Value for 

the Exponent v" 

). = 0.25 2 = 0.75 

N R~ v R~ v 

500 4862(10) 0.7433(11) 1874(4) 0.6238(6) 
1000 13554(31) 0.7447(17) 4449(10) 0.6239(8) 
2000 37927(91) 0.7460(27) 10556(25) 0.6242(13) 
4000 106704(277) 25073(60) 
8000 300005(874) 59567(155) 

v(2) 0.7500 0.6250 

a In both cases ~ = 0  and g 0 =  1. 

The presence of logarithms makes the analysis very difficult. First of  all in 
this case the convergence to the asymptotic regime is extremely slow. 
Moreover, the presence of the term log a N makes impossible an evaluation 
ofv.  Indeed, as we use data with 200 ~< N~< 8000, log t~ N behaves, as far as 
the fit is concerned, approximately as N---~ Thus in a pure power-law fit 
one really measures 2v+0.3f l .  Since we do not have any theoretical 
knowledge of fl, it is thus impossible to draw any definite conclusion. 

To better understand the validity of our conjecture (23), we have 
made two runs with higher statistics at 2 =0 .75  and 2 = 0.25 with 6 = 0 .  

25 

20 

15 

R^2/N 

I0 

5 

0 

Scaling function 

o<> 
o ~176 

o 

o O 

i00 200 300 400 500 

g N'{l+delta-lambd&) 

Fig. 1. Scaling function for the end-to-end distance in the case J <0 .  Small pentagons, 
rectangles, triangles, and diamonds correspond, respectively, to the values 2 = 0.90, 0.50. 0.25, 
and 0. 
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Each data point corresponds here to 9 • 1 0  6 iterations and in order to 
avoid any initialization bias we have discarded the first 100 N iterations. 
The results are reported in Table VII. A good agreement is seen, al though 
a systematic trend is visible in both cases. These results clearly support the 
claim that our conjectured value for v is really exact. 

We then checked if ( R ~ )  obeys the scaling laws (31) and (40). In 
Fig. 1 we plot our estimates of (R~. ) /N  versus N ~+~-~ for 6 < 0  and 
2 = 0.00, 0.25, 0.50, 0.90 with N >  200. The agreement seems quite good. 
However, a more detailed examination of the scaling plot shows that the 
data points do not belong to a unique curve within errors bars. Indeed, one 
sees that different runs with the same values of g and ~5 belong to distinct 
curves which approach each other only when N becomes large. This fact 
has to be expected. Indeed, as the analysis of the exponent v shows, for the 
values of N which we are considering the corrections to scaling are still 
large and thus we expect analogously large violations to the scaling 
behavior given by(40) .  Analogously in Fig. 2 we plot our  estimates 
(RZe)/N 3/2 versus N 1/2 +~-~ for ~ > 0 and 2 = 0.75, 0.90 and N > 200. Here 
again the agreement is only approximate. The situation is even worse for 
2 = 1.00 and 6 > 0: in this case the points are scattered and no scaling can 
be observed. This can be explained by the presence of logarithmic terms, 
which break the scaling laws and make the approach to the asymptotic 
regime extremely slow. As a final check we studied the behavior of the 
universal ratio A, which, using the scaling laws (31 and (40), must have 
the form 

A = h;.(gN l +'~ -;'} (56) 

for 6 < 0 and 

A =fl;.(gN t/2+'~-;') (57} 

0.6 

0.5 

0.4 

R'2/N  ̂  (3/2}0. 3 

0.2 

0.I 

0 

Scaling function 
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A 
A 

Z. 

i 
0.5 1 1.5 

g N~(delta-lambda+I/2) 

Fig. 2. Scaling function for the end-to-end distance in the case 6 > 0. Small pentagons and 
triangles correspond, respectively, to the values 2 = 0.90 and 0.75. 
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Fig. 3. Scaling function for the universal ratio A in the case /~<0.  Small pentagons, 
rectangles, triangles, and diamonds correspond, respectively, to the values 2 = 0.90, 0.50, 0.25, 
and 0. 

for 6 > 0. Moreover, for x ~ 0 both functions must converge to the ORW 
value 1/6. In Figs. 3 and 4 we present the scaling plots for A in the two 
cases. The agreement is reasonable, although a closer inspection shows 
again the presence of systematic deviations. 

We have also computed the exponent y. In this case we expect 
7 = ~'SAW = 43/32 for 2 ~< 0.5, where the walk behaves like a SAW, ), = 1 for 
2 >i 1, where we have ORW behavior; however, we do not have any reliable 
prediction for the intermediate regime 1/2 ~< 2 ~< 1. Indeed the simple varia- 
tional approach with a Gaussian trial function that we have reported in the 
previous section always predicts 

0.1625 

0.16 

0.1575 

A 0.155 

0.1525 

0.15 

0.1475 

% 

,7 = 0  (58) 

Scaling function 

4 4 4  ,# 

0 0.5 1 1.5 

g N ̂  (delta-lambda+3/2) 

Fig. 4. Scaling function for the universal ratio A in the case ~ >0 .  Small pentagons and 
triangles correspond, respectively, to the values 2 = 0.90 and 0.75. 
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Table VIII. Estimes of y as a Function 
of Nml n 

2 0.00 0.25 0.75 
go 2.00 1.00 1.00 

N~, = 100 1.339(7) 1.344(3) 1.217(2) 
N~i, = 200 1.338(9) 1.344(5) 1.216(2) 
N~, = 300 1.334(12) 1.347(7) 1.216(3) 
Nmi n =400 1.330(14) 1.344(8) 1.218(3) 
Nmin = 5 0 0  1.337(16) 1.346(9) 1.221(3) 
N~a, = 600 1.343(19) 1.340(10) 1.224(4) 
Nmi n = 700 1.342(12) 1.333( 11 ) 1.221 (4) 

and thus 

y = (2 - q)v = 2v (59) 

Therefore, even in the region of 2 where the walks behave like SAW, the 
previous formula gives a wrong prediction (2v=3/2) .  Presumably (59) 
always overestimates the true )'. We computed )' only for three values of 2, 
2 = 0.0, 0.25, 0.75. For  each value of 2 we made three runs with the join- 
and-cut algorithm with Nto t = 2000, 4000, 8000. For  the two lowest values 
of Nto t we performed 5 x 107 iterations, while in the last case we did 
2.5 x 107 iterations. In each case the starting configuration was a couple of  
walks of  length Ntot/2 thermalized at the given values of  2 and go using the 
pivot algorithm. The first Nto t iterations were subsequently discarded in 
order to guarantee equilibration. To evaluate )', we used the maximum- 
likelihood method as presented in ref. 25, Sections 4 and 5.2. We did not 
include any correction-to-scaling term, but made fits where the data with 
NI ,  N_, < Nmi n were systematically discarded. The results are reported in 
Table VIII. For  2 = 0.0, 0.25 the estimate is clearly compatible with )'SAW = 
43/32, while for 2.=0.75 we obtain ),(0.75)= 1.221-I-0.004-t-0.003, which 
shows that in the intermediate region also )'(2) is a continuous function 
of L 

6. C O N C L U S I O N S  

In this paper we have studied a new model for random walks. Its 
interesting feature is that, al though the interacion is strictly local, the 
mean-field Gaussian approximation gives the correct exponent v as long as 
v ~< VsA w. This shows that mean-field methods can be applied with success 
also to short-range models. On the contrary, the Fiory approximation,  
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which is so successful for the SAW, gives a value for v which disagrees with 
the numerical  data ,  except for 2 = 0 (Edwards  model )  and for 2 ~> 1 ( O R W  
universali ty class). It must  be noted that  a l though v is correctly predicted 
by a mean-field calculat ion,  the model  does not  really show mean-field 
behavior.  Indeed the exponent  ), is not  in agreement  with the mean-field 
predic t ion y = 2v. 

In o rder  to clarify why the Gauss ian  approx imat ion  works so well for 
2~>0.5 we studied P(r ,  t), the probabi l i ty  that  t o , - t o o = r .  F o r  large N, 
P(r ,  t) obeys a scaling law of  the form P(r,  t ) =  t- 'af(r/t~). The var ia t ional  
approx ima t ion  assumes f ( x )  to be a Gauss ian  peaked at x = 0, and this is 
indeed the behavior  we found for 2 = 0.75. Thus in this case the var ia t ional  
ansatz  is a good approx ima t ion  to the correct dis t r ibut ion,  thereby 
explaining the agreement  between the observed and the mean-field values 
of v. On the other  hand,  for 2 = 0.25, f ( x )  vanishes for x = 0. In this case 
the var ia t ional  app rox ima t ion  overest imates the potent ia l  energy: indeed, 
since the interact ion is local, the main cont r ibut ion  comes from small 
values of x and here the var ia t ional  d is t r ibut ion is much larger than the 
true one. As a consequence the chain is overswelled and v is overest imated.  
Let us notice that,  for a SAW in the par t icular  case in which Irl equals the 
latt ice spacing a, the probabi l i ty  P(a, t) is the relative number  of polygons  
with respect to the total  number  of walks star t ing from the origin to o . This 
rat io  is expected to behave asymptot ica l ly  as 

P(a, t ) ~  t ~-1 -~' (60) 

with ct satisfying the hyperscal ing relat ion 2 -  ct = dr. This means that  one 
can est imate the behavior  o f f ( x )  for small  x, finding f ( x ) ~ x  p with p =  
( ~ - 1 ) / v =  11/24. F o r  our  model  this relat ion does not  hold. This is a 
reflection of the fact that,  except in the wel l -known limiting case 2 = 0, the 
model  is not  described by a quan tum field theory. 

To conclude,  let us notice that  in order  to ob ta in  more  quant i ta t ive 
informat ion beyond the mean-field approx imat ion ,  one has to resort  to the 
renormal iza t ion  group approach,  which in this case should be implemented 
directly on the r andom-walk  model,  as was done, for example,  for the 
SAW. 113) It would be interest ing if a similar s tudy could be done also for 
the model  considered here. 7 

7 Unfortunately we do not believe that it is enough to renormalize only the non-local coupling 
as is done in ref. "18, but that also local counterterms should be introduced. The introduction 
of two couplings is particularly necessary near the point at which the local behavior is 
recovered. A similar approach in another context can be found in ref. 31. For a renormaliza- 
tion group study of polymers with long-range interaction see also ref. 32. We think that this 
is the reason the estimate of the exponent v obtained in ref. 18 does not agree with our result. 



542 Caracciolo et  al. 

N o t e  A d d e d .  After the completion of this article we got inde- 
pendent support for our conjectured prediction for the exponent v. Tom 
Kennedy t33} gently communicated us that he was able to prove that for 
D = I  the model we consider has v = l  for 2 < 1 ,  that is, when VsAw= 
VMF(2, 1), while he finds heuristic arguments based on a renormalization 
group analysis in real space to get v = 1/2 for 2 > 3/2, in full agreement with 
our formulas. 
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